Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586045

RESUMO

The bioenergetic demand of photoreceptors rivals that of cancer cells, and numerous metabolic similarities exist between these cells. Glutamine (Gln) anaplerosis via the tricarboxylic acid (TCA) cycle provides biosynthetic intermediates and is a hallmark of cancer metabolism. In this process, Gln is first converted to glutamate via glutaminase (GLS), which is a crucial pathway in many cancer cells. To date, no study has been undertaken to examine the role of Gln metabolism in vivo in photoreceptors. Here, mice lacking GLS in rod photoreceptors were generated. Animals lacking GLS experienced rapid photoreceptor degeneration with concomitant functional loss. Gln has multiple roles in metabolism including redox balance, biosynthesis of nucleotides and amino acids, and supplementing the TCA cycle. Few alterations were noted in redox balance. Unlabeled targeted metabolomics demonstrated few changes in glycolytic and TCA cycle intermediates, which corresponded with a lack of significant changes in mitochondrial function. GLS deficiency in rod photoreceptors did decrease the fractional labelling of TCA cycle intermediates when provided uniformly labeled 13C-Gln in vivo. However, supplementation with alpha-ketoglutarate provided only marginal rescue of photoreceptor degeneration. Nonessential amino acids, glutamate and aspartate, were decreased in the retina of mice lacking GLS in rod photoreceptors. In accordance with this amino acid deprivation, the integrated stress response (ISR) was found to be activated with decreased global protein synthesis. Importantly, supplementation with asparagine delayed photoreceptor degeneration to a greater degree than alpha-ketoglutarate. These data show that GLS-mediated Gln catabolism is essential for rod photoreceptor amino acid biosynthesis, function, and survival.

2.
Cancer Metab ; 12(1): 11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594734

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.

3.
Proc Natl Acad Sci U S A ; 121(12): e2319473121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478695

RESUMO

Hydrogen sulfide exposure in moderate doses can induce profound but reversible hypometabolism in mammals. At a cellular level, H2S inhibits the electron transport chain (ETC), augments aerobic glycolysis, and glutamine-dependent carbon utilization via reductive carboxylation; however, the durability of these changes is unknown. We report that despite its volatility, H2S preconditioning increases P50(O2), the O2 pressure for half-maximal cellular respiration, and has pleiotropic effects on oxidative metabolism that persist up to 24 to 48 h later. Notably, cyanide, another complex IV inhibitor, does not induce this type of metabolic memory. Sulfide-mediated prolonged fractional inhibition of complex IV by H2S is modulated by sulfide quinone oxidoreductase, which commits sulfide to oxidative catabolism. Since induced hypometabolism can be beneficial in disease settings that involve insufficient or interrupted blood flow, our study has important implications for attenuating reperfusion-induced ischemic injury and/or prolonging the shelf life of biologics like platelets.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Sulfetos , Oxirredução , Mamíferos/metabolismo
4.
Nat Chem Biol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509349

RESUMO

Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.

5.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902550

RESUMO

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Glioblastoma , Transdução de Sinais , Humanos , Camundongos , Animais , Transdução de Sinais/genética , Reparo do DNA , Dano ao DNA , Guanosina Trifosfato
6.
J Clin Invest ; 134(3)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085578

RESUMO

Itaconate has emerged as a critical immunoregulatory metabolite. Here, we examined the therapeutic potential of itaconate in atherosclerosis. We found that both itaconate and the enzyme that synthesizes it, aconitate decarboxylase 1 (Acod1, also known as immune-responsive gene 1 [IRG1]), are upregulated during atherogenesis in mice. Deletion of Acod1 in myeloid cells exacerbated inflammation and atherosclerosis in vivo and resulted in an elevated frequency of a specific subset of M1-polarized proinflammatory macrophages in the atherosclerotic aorta. Importantly, Acod1 levels were inversely correlated with clinical occlusion in atherosclerotic human aorta specimens. Treating mice with the itaconate derivative 4-octyl itaconate attenuated inflammation and atherosclerosis induced by high cholesterol. Mechanistically, we found that the antioxidant transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), was required for itaconate to suppress macrophage activation induced by oxidized lipids in vitro and to decrease atherosclerotic lesion areas in vivo. Overall, our work shows that itaconate suppresses atherogenesis by inducing Nrf2-dependent inhibition of proinflammatory responses in macrophages. Activation of the itaconate pathway may represent an important approach to treat atherosclerosis.


Assuntos
Doenças da Aorta , Aterosclerose , Succinatos , Camundongos , Humanos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças da Aorta/metabolismo
7.
medRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961582

RESUMO

The brain avidly consumes glucose to fuel neurophysiology. Cancers of the brain, such as glioblastoma (GBM), lose aspects of normal biology and gain the ability to proliferate and invade healthy tissue. How brain cancers rewire glucose utilization to fuel these processes is poorly understood. Here we perform infusions of 13 C-labeled glucose into patients and mice with brain cancer to define the metabolic fates of glucose-derived carbon in tumor and cortex. By combining these measurements with quantitative metabolic flux analysis, we find that human cortex funnels glucose-derived carbons towards physiologic processes including TCA cycle oxidation and neurotransmitter synthesis. In contrast, brain cancers downregulate these physiologic processes, scavenge alternative carbon sources from the environment, and instead use glucose-derived carbons to produce molecules needed for proliferation and invasion. Targeting this metabolic rewiring in mice through dietary modulation selectively alters GBM metabolism and slows tumor growth. Significance: This study is the first to directly measure biosynthetic flux in both glioma and cortical tissue in human brain cancer patients. Brain tumors rewire glucose carbon utilization away from oxidation and neurotransmitter production towards biosynthesis to fuel growth. Blocking these metabolic adaptations with dietary interventions slows brain cancer growth with minimal effects on cortical metabolism.

8.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904965

RESUMO

Hydrogen sulfide exposure in moderate doses can induce profound but reversible hypometabolism in mammals. At a cellular level, H 2 S inhibits the electron transport chain (ETC), augments aerobic glycolysis, and glutamine-dependent carbon utilization via reductive carboxylation; however, the durability of these changes is unknown. We report that despite its volatility, H 2 S preconditioning increases P 50(O2) , the O 2 pressure for half maximal cellular respiration, and has pleiotropic effects on oxidative metabolism that persist up to 24-48 h later. Notably, cyanide, another complex IV inhibitor, does not induce this type of metabolic memory. Sulfide-mediated prolonged fractional inhibition of complex IV by H 2 S is modulated by sulfide quinone oxidoreductase, which commits sulfide to oxidative catabolism. Since induced hypometabolism can be beneficial in disease settings that involve insufficient or interrupted blood flow, our study has important implications for attenuating reperfusion-induced ischemic injury, and/or prolonging shelf life of biologics like platelets.

9.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37790517

RESUMO

Background: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT), but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. Methods: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and in our models, quantified purine synthetic flux using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. Results: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novosynthesis and lower activity of purine salvage due to decreased expression of the purine salvage enzymes. Inhibition of de novo synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells adaptively upregulate purine salvage enzyme expression and pathway activity. Silencing the rate limiting enzyme in purine salvage, hypoxanthine guanine phosphoribosyl transferase (HGPRT) when combined with radiation markedly suppressed DMG-H3K27M tumor growth in vivo. Conclusions: H3K27M expressing cells rely on de novo purine synthesis but adaptively upregulate purine salvage in response to RT. Inhibiting purine salvage may help overcome treatment resistance in DMG-H3K27M tumors.

10.
Nature ; 618(7963): 151-158, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198494

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Assuntos
Glucose , Neoplasias Pancreáticas , Ribose , Microambiente Tumoral , Uridina , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ribose/metabolismo , Uridina/química , Glucose/deficiência , Divisão Celular , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo , Humanos
11.
J Biol Chem ; 299(5): 104691, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037306

RESUMO

Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Mitofagia , Proteínas Quinases , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ferritinas , Ferro/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993187

RESUMO

Angiogenic programming in the vascular endothelium is a tightly regulated process to maintain tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Herein, we report that hypoxic upregulation of NO synthesis in endothelial cells reprograms the transsulfuration pathway and increases H 2 S biogenesis. Furthermore, H 2 S oxidation by mitochondrial sulfide quinone oxidoreductase (SQOR) rather than downstream persulfides, synergizes with hypoxia to induce a reductive shift, limiting endothelial cell proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body WB Cre SQOR fl/fl knockout mice exhibit lower mass and reduced angiogenesis compared to SQOR fl/fl controls. WB Cre SQOR fl/fl mice also exhibit reduced muscle angiogenesis following femoral artery ligation, compared to controls. Collectively, our data reveal the molecular intersections between H 2 S, O 2 and NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization. Highlights: Hypoxic induction of •NO in endothelial cells inhibits CBS and switches CTH reaction specificity Hypoxic interruption of the canonical transsulfuration pathway promotes H 2 S synthesis Synergizing with hypoxia, SQOR deficiency induces a reductive shift in the ETC and restricts proliferationSQOR KO mice exhibit lower neovascularization in tumor xenograft and hind limb ischemia models.

13.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993718

RESUMO

To identify novel drivers of malignancy in pancreatic ductal adenocarcinoma (PDAC), we employed regulatory network analysis, which calculates the activity of transcription factors and other regulatory proteins based on the integrated expression of their positive and negative target genes. We generated a regulatory network for the malignant epithelial cells of human PDAC using gene expression data from a set of 197 laser capture microdissected human PDAC samples and 45 low-grade precursors, for which we had matched histopathological, clinical, and epidemiological annotation. We then identified the most highly activated and repressed regulatory proteins (e.g. master regulators or MRs) associated with four malignancy phenotypes: precursors vs. PDAC (initiation), low-grade vs. high grade histopathology (progression), survival post resection, and association with KRAS activity. Integrating across these phenotypes, the top MR of PDAC malignancy was found to be BMAL2, a member of the PAS family of bHLH transcription factors. Although the canonical function of BMAL2 is linked to the circadian rhythm protein CLOCK, annotation of BMAL2 target genes highlighted a potential role in hypoxia response. We previously demonstrated that PDAC is hypovascularized and hypoperfused, and here show that PDAC from the genetically engineered KPC model exists in a state of extreme hypoxia, with a partial oxygen pressure of <1mmHg. Given the close homology of BMAL2 to HIF1ß (ARNT) and its potential to heterodimerize with HIF1A and HIF2A, we investigated whether BMAL2 plays a role in the hypoxic response of PDAC. Indeed, BMAL2 controlled numerous hypoxia response genes and could be inhibited following treatment with multiple RAF, MEK, and ERK inhibitors, validating its association with RAS activity. Knockout of BMAL2 in four human PDAC cell lines led to defects in growth and invasion in the setting of hypoxia. Strikingly, BMAL2 null cells failed to induce glycolysis upon exposure to severe hypoxia and this was associated with a loss of expression of the glycolytic enzyme LDHA. Moreover, HIF1A was no longer stabilized under hypoxia in BMAL2 knockout cells. By contrast, HIF2A was hyper-stabilized under hypoxia, indicating a dysregulation of hypoxia metabolism in response to BMAL2 loss. We conclude that BMAL2 is a master regulator of hypoxic metabolism in PDAC, serving as a molecular switch between the disparate metabolic roles of HIF1A- and HIF2A-dependent hypoxia responses.

14.
Antioxid Redox Signal ; 39(13-15): 942-956, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36852494

RESUMO

Aims: Targeting tumor metabolism may improve the outcomes for patients with glioblastoma (GBM). To further preclinical efforts targeting metabolism in GBM, we tested the hypothesis that brain tumors can be stratified into distinct metabolic groups with different patient outcomes. Therefore, to determine if tumor metabolites relate to patient survival, we profiled the metabolomes of human gliomas and correlated metabolic information with clinical data. Results: We found that isocitrate dehydrogenase-wildtype (IDHwt) GBMs are metabolically distinguishable from IDH mutated (IDHmut) astrocytomas and oligodendrogliomas. Survival of patients with IDHmut gliomas was expectedly more favorable than those with IDHwt GBM, and metabolic signatures can stratify IDHwt GBMs subtypes with varying prognoses. Patients whose GBMs were enriched in amino acids had improved survival, while those whose tumors were enriched for nucleotides, redox molecules, and lipid metabolites fared more poorly. These findings were recapitulated in validation cohorts using both metabolomic and transcriptomic data. Innovation: Our results suggest the existence of metabolic subtypes of GBM with differing prognoses, and further support the concept that metabolism may drive the aggressiveness of human gliomas. Conclusions: Our data show that metabolic signatures of human gliomas can inform patient survival. These findings may be used clinically to tailor novel metabolically targeted agents for GBM patients with different metabolic phenotypes. Antioxid. Redox Signal. 39, 942-956.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Mutação , Glioma/genética , Glioma/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
15.
Sci Immunol ; 7(77): eabm8182, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36399539

RESUMO

T cell proliferation and cytokine production are bioenergetically and biosynthetically costly. The inability to meet these metabolic demands results in altered differentiation, accompanied by impaired effector function, and attrition of the immune response. Interleukin-17-producing CD4 T cells (TH17s) are mediators of host defense, autoimmunity, and antitumor immunity in the setting of adoptive T cell therapy. TH17s are long-lived cells that require mitochondrial oxidative phosphorylation (OXPHOS) for effector function in vivo. Considering that TH17s polarized under standardized culture conditions are predominately glycolytic, little is known about how OXPHOS regulates TH17 processes, such as their ability to persist and thus contribute to protracted immune responses. Here, we modified standardized culture medium and identified a culture system that reliably induces OXPHOS dependence in TH17s. We found that TH17s cultured under OXPHOS conditions metabolically resembled their in vivo counterparts, whereas glycolytic cultures were dissimilar. OXPHOS TH17s exhibited increased mitochondrial fitness, glutamine anaplerosis, and an antiapoptotic phenotype marked by high BCL-XL and low BIM. Limited mitophagy, mediated by mitochondrial fusion regulator OPA-1, was critical to apoptotic resistance in OXPHOS TH17s. By contrast, glycolytic TH17s exhibited more mitophagy and an imbalance in BCL-XL to BIM, thereby priming them for apoptosis. In addition, through adoptive transfer experiments, we demonstrated that OXPHOS protected TH17s from apoptosis while enhancing their persistence in the periphery and tumor microenvironment in a murine model of melanoma. Together, our work demonstrates how metabolism regulates TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases.


Assuntos
Fosforilação Oxidativa , Microambiente Tumoral , Camundongos , Animais , Mitocôndrias/metabolismo , Glicólise/genética , Diferenciação Celular
16.
Nat Cancer ; 3(11): 1386-1403, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36411320

RESUMO

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Asparagina/metabolismo , Adenocarcinoma/tratamento farmacológico , Simbiose , Microambiente Tumoral , Neoplasias Pancreáticas
17.
Cancer Res Commun ; 2(9): 1017-1036, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36310768

RESUMO

It is projected that in 5 years, pancreatic cancer will become the second deadliest cancer in the United States. A unique aspect of pancreatic ductal adenocarcinoma (PDAC) is its stroma; rich in cancer-associated fibroblasts (CAFs) and a dense CAF-generated extracellular matrix (ECM). These pathogenic stroma CAF/ECM units cause the collapse of local blood vessels rendering the tumor microenvironment nutrient-poor. PDAC cells are able to survive this state of nutrient stress via support from CAF-secreted material, which includes small extracellular vesicles (sEVs). The tumor-supportive CAFs possess a distinct phenotypic profile, compared to normal-like fibroblasts, expressing NetrinG1 (NetG1) at the plasma membrane, and active Integrin α5ß1 localized to the multivesicular bodies; traits indicative of poor patient survival. We herein report that NetG1+ CAFs secrete sEVs that stimulate Akt-mediated survival in nutrient-deprived PDAC cells, protecting them from undergoing apoptosis. Further, we show that NetG1 expression in CAFs is required for the pro-survival properties of sEVs. Additionally, we report that the above-mentioned CAF markers are secreted in distinct subpopulations of EVs; with NetG1 being enriched in exomeres, and Integrin α5ß1 being enriched in exosomes. Finally, we found that NetG1 and Integrin α5ß1 were detected in sEVs collected from plasma of PDAC patients, while their levels were significantly lower in plasma-derived sEVs of sex/age-matched healthy donors. The discovery of these tumor-supporting CAF-EVs elucidates novel avenues in tumor-stroma interactions and pathogenic stroma detection.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Integrina alfa5beta1/metabolismo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
18.
Cell Rep ; 41(4): 111516, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288696

RESUMO

Natural killer T (NKT) cells operate distinctly different metabolic programming from CD4 T cells, including a strict requirement for glutamine to regulate cell homeostasis. However, the underlying mechanisms remain unknown. Here, we report that at a steady state, NKT cells have higher glutamine levels than CD4 T cells and that NKT cells increase glutaminolysis on activation. Activated NKT cells use glutamine to fuel the tricarboxylic acid cycle and glutathione synthesis. In addition, glutamine-derived nitrogen enables protein glycosylation via the hexosamine biosynthesis pathway (HBP). Each of these branches of glutamine metabolism seems to be critical for NKT cell homeostasis and mitochondrial functions. Glutaminolysis and HBP differentially regulate interleukin-4 (IL-4) and interferon γ (IFNγ) production. Glutamine metabolism appears to be controlled by AMP-activated protein kinase (AMPK)-mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight a distinct metabolic requirement of NKT cells compared with CD4 T cells, which may have therapeutic implications in the treatment of certain nutrient-restricted diseases.


Assuntos
Células T Matadoras Naturais , Células T Matadoras Naturais/metabolismo , Interleucina-4/metabolismo , Glutamina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Interferon gama/metabolismo , Homeostase , Hexosaminas/metabolismo , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nitrogênio/metabolismo , Glutationa/metabolismo
19.
Sci Rep ; 12(1): 12258, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851833

RESUMO

Heart failure (HF) is the inability of the heart to pump blood sufficiently to meet the metabolic demands of the body. HF with reduced systolic function is characterized by cardiac hypertrophy, ventricular fibrosis and remodeling, and decreased cardiac contractility, leading to cardiac functional impairment and death. Transverse aortic constriction (TAC) is a well-established model for inducing hypertrophy and HF in rodents. Mice globally deficient in sirtuin 5 (SIRT5), a NAD+-dependent deacylase, are hypersensitive to cardiac stress and display increased mortality after TAC. Prior studies assessing SIRT5 functions in the heart have all employed loss-of-function approaches. In this study, we generated SIRT5 overexpressing (SIRT5OE) mice, and evaluated their response to chronic pressure overload using TAC. Compared to littermate controls, SIRT5OE mice were protected against adverse functional consequences of TAC, left ventricular dilation and impaired ejection fraction. Transcriptomic analysis revealed that SIRT5 suppresses key HF sequelae, including the metabolic switch from fatty acid oxidation to glycolysis, immune activation, and fibrotic signaling pathways. We conclude that SIRT5 is a limiting factor in the preservation of cardiac function in response to experimental pressure overload.


Assuntos
Insuficiência Cardíaca , Sirtuínas , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Sirtuínas/metabolismo , Remodelação Ventricular
20.
Elife ; 112022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815941

RESUMO

Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate-aspartate shuttle, a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the TME.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Aspartato Aminotransferase Mitocondrial/genética , Aspartato Aminotransferase Mitocondrial/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas de Ligação a Ácido Graxo , Humanos , Camundongos , NAD/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ácido Pirúvico/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...